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Abstract. An exact real-space rescaling transformation is used to calculate the Green
functions and densities of states for a one-dimensional binary system with long-range
exponentially decaying interactions between the atoms. The model is applied to both
diatomic and s-p hybrid crystals.

1. Introduction

Recent work (Southern eral 1983a, b, Langlois et al 1983, Tremblay and Southern 1983,
Lavis et al 1985) has demonstrated the effectiveness of the real-space rescaling approach
for the study of tight-binding systems. The procedure can be applied to a wide range of
problems and provides a direct method of calculating Green functions (GFs). The basic
idea is to take equations which describe a system with N degrees of freedom and to
perform a transformation in which the number of degrees of freedom is reduced. A set
of relationships, or recurrence equations, is obtained between the renormalised energy
parameters and the original set. Iteration of these equations leads to an effective diag-
onalisation of the GF matrix and the diagonal GFs are obtained from the limiting values
of the renormalised parameters. If the diagonal GFs are analytically continued into the
complex z plane, where z = E + i6 and E is the energy, the localised states will appear
as isolated singularities on the real axis and extended states will appear as branch cuts
on the real axis (Economou 1983).

In this work we shall be primarily concerned with a binary system of alternating
A and B atoms on a one-dimensional lattice with long-range exponentially decaying
interactions, although the method can be used for more general situations. We first apply
a transformation which decomposes the system into two non-interacting homogeneous
monatomic systems. At this stage it is possible, in some special cases, to relate the
properties of the system to those of a monatomic system using a two-valued mapping.
We shall use this to extract analytic formulae for band edges and, in some cases, for
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densities of states (DOS). In general the interactions in the new decoupled systems are
of a more complicated form, but we shall show that this form is invariant under the
rescaling procedure of Southern er al (1983b). This allows us to obtain the spectral
properties of the original system. The outline of the paperis as follows. In § 2 we consider
a monatomic system in the many-neighbour approximation (MNA) as introduced by
Davison and Taylor {1969) and describe the rescaling treatment of this model which is
needed for the development of a mapping to the diatomic system later in the paper. In
§ 3 we describe the general diatomic model, implement the one-step transformation to
decoupled systems of A and B atoms, and develop the scaling equations. In § 4 we apply
the model to crystals of A and B atoms with s orbitals and alternating s and p orbitals,
as developed by Davison (1972). In § 5 anapplication to the s—p hybrid model of Davison
and Foo (1976) is considered and our conclusions are presented in § 6.

2. The general monatomic chain

We consider the generalised monatomic tight-binding system with Hamiltonian

x

Hy= X ({s>£0<s| + D (U +n| + s + n)U(")<s|)>. (1)
s=—x n=1

The spectral properties of the atom at site s can be obtained from the diagonal element

(s|Gls) of the lattice GF operator G = (zI — H)™!. where [ is the identity operator and

z=FE +i6, E being the energy. The matrix elements G(s, m) = {s|Gylm) of G, are

given by

(z = €0)Go(s,m) = 2, U (Go(s + n,m) + Go(s — n,m)) = 8, . @)
n=1

Since the chain is homogeneous we can, without loss of generality, set m = 0 and rewrite

equations (2) in the form

kS

Go(s,0) — 2_‘,1 x,(Go(s + 1,0) + Go(s — n,0)) = a, (3)
where "

x, =U"/(z — &) (4a)

a, = 8,0/(z = &) (4b)

We now apply a rescaling transformation to equation (3) which decouples alternate sites
of the lattice. The transformation is applied iteratively with the even-numbered sites
retained and relabelled at each stage of the procedure in order to map the system into
an identical system with half as many sites. This rescaling method is described in detail
by Southern et al (1983b). They have derived the formulae for the rescaled energy
parameters which, in terms of our notation, can be expressed in the form

, 2xp, + W, (x,x) +20,(x,x)
¥n = 1= 2®,(x, %)

n>0 (5a)

, g +2Py(x, a)

Fo = 1 =2®,(x,x) (56)
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oy — qoxa + W (x, a) + O, (x, @) + O,(a, x)

'= >0 5¢
%s 1-2®,(x,x) s (5¢)
where a’; = a; and
2-1
W, (a,b) = 2 (=1 aby §>0 (6a)
j=1
®,(a,b) = 2 (~1)*aby., s=0. (6b)
j=1
Successive application of equations (5) yields a sequence x*, o, k=0,1,2, ... of

parameter values beginning at some x = x,,, al¥’ = a;, given by equations (4). If

lim x*) =0 n=12,... (7a)

k— <
a condition which can be checked during numerical implementation, it follows that

Gy(0,0) = lim al?. (7b)

The DOS can be obtained in the usual way from the imaginary part of G(0, 0). This
scaling procedure is independent of the form of the interaction energies {U™}. It s,
however, clear that for any practical application of the procedure we need to reduce the
infinite set of parameters to a finite set. This can be accomplished by either (a) taking a
model with non-zero interactions extending to only a finite number of neighbouring sites
or (b) retaining interactions to any range but introducing some relationship between the
interactions. An example of the first of these options is the work of Southern et al
(1983b), where interactions extending either only as far as nearest neighbours (NN) or
next NN are considered.

An MNA for a monatomic chain was introduced by Davison and Taylor (1969). The
basis of their model is to take

Ut = Upn-! (®)

for some parameters U and p, where |p| < 1. The application of the rescaling method to
this model will be seen as an example of option (b), described above. From equation
(4a)

x, =xp"} )
where

x=U/(z — &). (10)
For scaling purposes we also write

a, = Bp*! s#0 (11)

although the initial value of 8 is zero. The series in equation (5) are now geometric and
we obtain the scaling equations

pl = pz (12(1)
x' = [2xp(1 + p?) + x*(1 + 3pH)]/A (12b)
ag = [ao(l + p?) + 2xB]/A (12¢)
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B' = [p(B — aox)(1 + p?) + xB(1 + 3p*)]/A (12d)
where

A=(1+p?) — 22 (13)
In the (x, p) plane p = O is an invariant line of the transformation (12). It corresponds
to the NN problem solved by Southern er a/ (1983b) in which ' = 8 = 0. Equations

(12a, b) possess a fixed point p = 0, x = } which is approached along an invariant line
x = (1 — p)/2. This line is reached from initial values which satisfy the equations

x=(x1-p)/2 (14)
If the initial value of x is such that
—(1+p)2<x<(1-p)2 (15)

then x iterates monotonically to zero, and a; in equation (12¢) converges to a limiting
real value. If, on the other hand, the initial value of x neither satisfies equation (15) nor
liesonthelines (14) thenx’ behaves chaotically underiteration and a;,does not converge.

The lines given by equations (14) are the band edges derived by Davison and Taylor
(1969). They can also be obtained by using the change of variable given by

x=-p+x(1-p)/(1-2px) (16)
when equation (12a) takes the form
xp =xi/(1 - 2x7) (17)

which is the scaling equation for the NN problem. Since the band edges for this problem
lieatx, = =} we can obtain equations (14) by substituting these values in equation (16).
Thediagonal GF G (0, 0) for the MNa has been obtained recently, using Fourier transform
methods (Davison et al 1986). It takes the form

&y
(x+p)

Numerical implementation of the scaling equations yields results identical to those
obtained from equation (18). The NN case of equation (18) with p = 0 has been derived
analytically from the scaling procedure by Lavis et al (1985).

G,(0,0) =

o+ [x™' =201 = p) 1727 + 2(1 + p) ']V (18)

3. The diatomic chain

We consider the diatomic chain shown in figure 1 with Hamiltonian

=

Hy= 2 [|A;s)ea(A;s| + |B; s)ep(B; s))

s=—%

+ (|A;s>Vﬁ,’&(A; s+nl+|A;s + V(A S])
n=1

£

+ (|B;s)V{3”g(B;s +nl+|B;s + n)V%’é(B;sD
n=1
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£— Vaa? > Vag? >
’ Vea * Vie —>
-2 -2 -1 -1 g 0 1 i 2 2
- o ~---- *--—--- P - -~ o----- .- - S - O-e-
H‘ Vaa 7% Vas® A/
:< Vs ® X Ves >

Figure 1. The diatomic lattice. Full circles, A atoms with self-energy €,; open circles, B
atoms with self-energy €g. Interaction energies are indicated and the sites are labelled in
pairs. Each pair represents a single atom for the s—p hybrid model.

+ n§0 (A; s}Vf{%(B; s+n/+|B;s+ n)VX'I);(A; s))

+ 2 (Bss)VI(A;s + 1+ |A;s + n)VE (B; s)] (19)
n=1

where
VO =Vt n=0,1,2,...

v vy n-1 vim vy n—1 v =y n—1 =12 } (20)
BA BAP AA AAP BB BBP n 2,

In this case we have four sets of equations for the elements Gep(s, m) = (C; 5|G2|D; m)
(C,D = A, B) of the GFoperator G, = (zI — H,)™". To these sets of equations we apply
an initial transformation equivalent to a block diagonalisation of the matrix into a block
associated with the A sites and a block associated with the B sites. The result of this
procedure is that we obtain the independent sets of equations

<

Geels, 0) = 2 x,(Gecls + 1,0) + Gee(s —n,0)) = a©

n=1
C=A,B (21)
where
Xy =xp" " +y(n—1)p"? (22a)
O = BepF ™t + ye(ls| = 1)pkl2 s#0,C=A,B (22b)
x =[Vaalz — €8) + Vga(z — €4) + VapVpa + pW1/Z (23a)
y=(pVasVea = VanVes)/Z (23b)
ol = (2~ e5)/Z (23¢)
af) = (2~ ea)/Z (23d)
Ba= —Ves/Z (23e)
Bs = - VAA,/Z (23f)
W= (Vis + Via — 2VaaVer)/(1 — p?) (24a)

Z=(z—¢€x)(z—¢eg)— W (24b)
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The parameters v, and yg are zero, but have been included because, under the scaling
procedure now to be introduced, they will, in general, become non-zero. At this point
we could solve for G¢¢(s, 0), given by equations (21), using Fourier transform methods.
This is possible because of the exponential form of the interactions given by equations
(20). However, we shall use the rescaling procedure described in § 2, since it is not
restricted to interactions of this form, although it is simpler in this case.

The two sets of equations (21) are each of the form of equations (3) and we apply the
rescaling procedure given by equation (5). In this case the interactions are given by
equations (22), which are a more general form of MNA than that represented by the
corresponding equations (9) and (11). This means that the scaling equations will be more
general than those given by equations (12) and take the form

p' =p (25a)
x'=[2xp + y)(1+ p%)° + ¥} (L + 3p%) (1 + p?)?
+dxyp(l + p?) = 2y*p*(3 + p?))/Q (25b)
vy =y(1+ pH)[(4p* + 2xp — y) (1 + p?)? + 4p°x(1 + p?) - 4yp*]/Q (25¢)
af = [af0(1 + p?)* + 2xBe(1 + p?)? = 2p(yBc + xvc) (1 + p?)
=2yvc(1 = p?)]/Q C=A,B (254)
B =[(Bep+ ve — &l (xp + y)(1 + p2)® + 20(yBc + xyc) (1 + p?)
+xfc(1+3p%)(1 + p*)* = 2yycp*(3 + p?)]/Q C=A,B (25¢)
ve = (1+ p2)[2p%(vc — yel™) (1 + p?)? + [p(yBc + x¥c) = yycl (1 + p?)?
+20%(yex + Bey) (1 + p?) — 4piyey}/Q C=A,B (25f)
where
Q=(1+p")° =21+ p?)* + dxyp(1 + p?) + 2y*(1 = p?). (26)

From equation (25a) we see that p again iterates to zero and the problem is controlled
by the fixed points of the next-NN problem, which are discussed in § 5. We can recover
the results for the MNA on a monatomic chain by setting Vg = Vg4 = 0, in which case
we have two independent chains. Although this special case provides a useful check on
our numerical procedure, the scaling equations (25) do not immediately reduce to
equations (12) because of our initial transformation. They do, however, for the chain of
A atoms if we also set Vg = 0 and similarly for the B atoms if we set V4, = 0.

The procedure described in this section can be applied with arbitrary choices for the
energyparameters €, €g, Vaa, Vagp, Vag, Vea. Inthe following sections we shall consider
some particular applications of the model. In some of these, direct analytic information
can be derived by obtaining relationships with the monatomic MNA.

4. s-orbital and s—p-orbital models

In order to facilitate the discussion of the initial transformation of our model we chose
to label the sites in pairs and to define the MNA based on pairs of sites. In this section a
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single-site labelling is preferable. We therefore define a new many-neighbour parameter
n by

p=n (27a)
with

Vaa= r]VAA (27b)

Vgg = NVgs. (27¢)

In this section we consider two models: case (a) where each atom has only an s orbital;
case (b) where each A atom has an s orbital and each B atom has a p orbital. This means
that

Vpa=V (28a)
VAB = UV (28b)
for some parameter V, where
+1 for case (a)
o= (29)
-1 for case (b).

With this choice of parameters and Vaaand Vgg taking the same sign for case (a) and
different signs for case (b), the rescaling method of § 3 allows us to compute the partial

Vaa=V (30a)
Vig = oV (30b)

have been considered by Davison (1972). In these circumstances it will be seen, from
equation (23b), that the initial value of y is zero and, since the initial values of y, and
yg are in any case zero, these three parameters will remain zero under iteration. This
means that the rescaling equations will be of the form of those for the monatomic chain,
given by equations (12), with p = n° and 8 = 8, and Sz, &y = arf)A’ and cv(()m. The dif-
ference between this situation and that of the monatomic chainis in the initial conditions.
From equations (23) and (27)—(30) these can be expressed in the form

x=[En1+a)1+ 1)+ enl-0)(1-n)+ o0 +30/x, (31a)

oM =(C+ @)1+ on?)/Vy, (31b)

o = (L~ @)1+ an*)/Vyx, (31c)

Ba=—on(l + an*)/Vy, (31a)

Be=—n(1 +an*)/Vx, (31e)
where

£=(22— g5 — £5)/2V (32a)

® = (5~ €5)/2V (32b)
and

Xo=(1+0n) (& - ¢?) - 2. (33)
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Unlike the monatomic MNA, where x ! is a reduced energy parameter given by equation
(10), we now have x given by equation (31a). For fixed n, the mapping from x to the
energy parameter § has two branches

-1 1 -1 1- 2
;=x_%+_<f>t K(pgu(_z_@) +x 220

1/2
+x7Y(1 +an2)"1(2x+0+3n2)] (34)

when x # 0. When x = 0 and o = 1 (case (a)) we have
£=—@1+3n%)/2n(1 + 9. (35)

The line x = Ois an invariant line in the (x, n) plane. It contains the attractive fixed point
x = 1 = 0 and corresponds to the special case of a non-interacting system.

In the (x, ) plane the band edges are given, from equations (14), by the expression
x = (=1 - 17?)/2 and substituting in equation (34) we have two bands with edges
(EW, £?)and (£, £2)) given by

1+ 1-0)\? 21+0)7"
gl = —nl( — nf) * l:(q; + nl( — n?) + (1(_ 'I;;)Z] (36a)
1+ 2(1-0)(1 - 172
£ = - —’71( - n‘:’) - <<p2 L X 101(772 ‘p”)) . (36b)

These band edges were obtained by Davison (1972), except that he omitted the modulus
signs which occur in equations (36a) and (36b) when o= —1 and o =1 respectively.
This led him to believe that in case (b) (o0 = —1) the band edges ¢ crossed at £ =0,
leading to an overlap of bands. In fact the bands touch at the point =0, n=
[1 - (1 + ?)'?]/@ where the band edges have a discontinuity of slope.

For case (a) the width of the band becomes zero when n = = n*(¢), where n* is the
one real root of

2n’lpl + n* + 20l - 1=0 (37a)

in the range (—1, 1). Substituting back into equations (36), with o = 1, we find that the
points of zero band width occur at §{ = = {*(¢p), where

& =(1+3n"Y)/2n* (1 + n*?)]. (37b)
For case (b) the cubic equation
20 - 30t =290 +1=0 (38a)

has two real roots 77;(@) and 77,(@) in the range (—1, 1) and the band width of each band
is zero at both 7, and 7, where

{=Cilp) ==[¢? 201 — )" i=1,2 (38b)

The reason for which it is possible to obtain points of zero band width using a mapping
fromthe (x, n) plane, where the band is always of non-zero width, is clear if we substitute
from equations (37) and (38) into equation (31a), when itis seen that both the numerator
and denominator are zero.

In general it is not possible to obtain the diagonal GF for the system by transforming
equation (18) in the same way as we have transformed (14) to obtain the band edges.
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The reason for this is that, in equations (31), the initial values of B, and B are non-zero
leading to a non-equivalence between this model and the homogeneous monatomic
chain. In the special case n = 0, however, this non-equivalence is removed and the
scalmg equations reduce to the NN case given by equations (12) with p =0, a, =
af)A , &', B = Ba, Bs. Ifin equations (18) we substitute p = 0, x given by equation (31a)
and a(AO) and ar(B) given by equations (310) and (31¢), successively for «,, we obtain for

both cases (a) and (b)

Gaa(0,0) 1( e )1/2 (39a)
s =T a
A VAE-9) (- -4
1 C— @ 172
Ggp(0,0 =—< —— > ) 39
00 =\t E - -9 (356)
The partial Dos D(E) at a Csite, for C = A, B, is given by
Dq(E) = - Glir(x)l 27 Im[Gee(0, 05 2)) (40)
-0+

where z = E + i6. When n = 0 the band-edge equations (36) take the simple form

¢V = = [@? +2(1 + 0)]V? (41a)

ue
e
1l

+ [ +2(1 - o)]'™. (41b)

For case (a) (0 = 1) both partial DOs have square-root singularities at the band edges
¢® and at the band edges £ there is one zero and one square-root singularity for each
partial pos. For case (b) (0 = —1) the roles of {¥ and {2 are reversed. Curves for
partial DOs, derived from these formulae, are given by Parent et a/ (1980). For 1 non-
zero the scaling procedure is used to obtain partial Dos. We find that the band-edge
properties are unchanged by the introduction of 7.

Band-edge curves for the s-orbital model (case (a)) for ¢ = 1 are given by Davison
(1972). For this case equations (37) give the numerical values n*(1) = 0.376, £{*(1) =
1.659. In figure 2 we present curves for the partial DOs of the s-orbital model plotted
against { = (2E — &5 — £5)/2V for n =0.6, @ = 1. The band edges are ({?, V) =
(—1.883, —1.402). (¢?, ¢P) = (0.118, 5.158). Each partial DoOs has a square-root
singularity at the upper band edge. As 7 is decreased through n* the band edges of the
lower band are reversed and at n = 0 we have the results of Parent et a/ (1980) where
the square-root singularities of both partial DOS occur at the pair of outer band edges.
In figure 3 we present another example of the s-orbital model with n =0.6, ¢ =1,
Vaa =V, Vgg = 0.5V. Here the initial value of y, given by equation (23b), is no longer
zero and the analytic derivation of the band edges, given above, no longer applies. The
situation is somewhat similar to that of the s—p hybrid crystal discussed in § 5. The
parameter y for n = 0 becomes a next-NN interaction, which generates internal band
singularities. When 7 # 0 these effects persist.

In figure 4 we present the partial DoOs for the s—p-orbital model (case (b)) when n =
0.6, = 1. Inthiscase the bands touch at = —0.414 and, from equations (38), n,(1) =
—0.745, ny(1) = 0.4 with §,(1) = £2.344, {,(1) = =1.839. Each partial pOs has a
square-root singularity at the inner band edge.
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T
R -
:\;’
1.01 L
<
Q
0.54 L
ol T &

30 <20 10 0 10 20 30 &0 50 60
1={2E-c,-e 12V

Figure 2. Partial densities of states for the s-orbital model of a diatomic crystal, plotted

against £ = (2E — €4 — €3)/2V. The parameter valuesare 1 = 0.6 (0 = 0.36), Vg = Vg =

V=10, Vsa = Vgg = 1.0, ¢ = 1.0. The partial densities of states for A and B atoms are
represented by full and broken curves respectively.

1.00

0.754

0.504

D (£}

0.254

05 15 25 35 45 55
;=(2£'EA'EB)/ZV

Figure 3. The same as in figure 2 except that VAA =1.0. VBB =0.5.
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1.00

0.75

DIE)

0.504

0.254

0 T T - T T T
-35  -25 -15 -05 0.5 15 25 3.5

1= 12E-€4-€g)/2V

Figure 4. Partial densities of states for the s—p-orbital model of a diatomic crystal, plotted
against { = (2E — €, — £p)/2V. The parameter valuesare = 0.6 (0 = 0.36), V5 = — 1.0,
Vea =V =10,V =1.0,Vpg = — 1.0, ¢ = 1.0. The convention for representing curves is
the same as in figures 2 and 3.

5. An s-p hybrid model

For the ionic crystal, described in § 4, the s and p orbitals are located at alternate sites.
In an s—p hybrid crystal like silicon or germanium both orbitals are located on the same
site. In this case, therefore, we construe the A and B sites of figure 1 as s and p orbitals
respectively and a pair as representing a single atom. The model of § 3 is applicable to
that situation in all its generality. For ease of discussion, however, we shall concentrate
onthespecialcase g5 = €5 = €¢, Vaa = Vg = Vwhich was investigated by Davison and
Foo (1976). When p = 0, it follows from equation (22a) that x and y become the NN and
next-NN interactions (x = x;, y = x,) and the scaling equations reduce to

x' = (x?+2y)/(1 = 2x? + 2y?) (42a)
y = —=y?/(1 - 2x>+2y?) (42b)
ol = (af? +24Bo)/(1 -2 +2y)  C=A,B (420)
Be = (Bcx — alFy)/(1 — 2x? + 2y?) C=A,B. (42d)

The next-NN problem has been considered by Southern et a/ (1983b) and the DOs has
been calculated by Bahurmuz and Loly (1981). In the (x, y) plane the line

2y+2x=1 (43a)
and the curve

(4y + )2 =1-2x? (43b)
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are invariant under the transformation (42) and the line
2y—2x=1 (43¢)

maps into equation (43a) in one iteration. The band of extended states is given by
-1

x{' s x 1= xg!, where
N 7 (v/x) <} i
—[1+ 8(y/x)*)/(4y/x) 1< (y/x)
- 2 < -1
it = [1+8(y/x)%]/(4y/x) (y/x)< -4 an)
2(y/x) +2 —1< (y/x).

The band edge x = x|, contains the fixed point x = §, y = 0, which is the ordinary band-
edge fixed point encountered in our discussion of the monatomic system, and the fixed

point x = §, y = — § which is a special point located at the meeting of the two different
analytic forms for x(; in equation (44b). The corresponding pointsx = —3,y = 0andx =
— %,y = — ¢, which lie on x; , are mapped into the fixed points in one iteration. We now
define the variables
E=(z-&)/V (43a)
v=Vga/V (45b)
§=Va/V (45¢)

and obtain the band edges of the s—p hybrid (for p = 0) using the mapping given by
equations (23a) and (23b). These equations can be re-expressed in the form

x=Q20+&)/2Q+ -5 - (46a)
y=-1/2+8 -8 -v) (46b)

For fixed &, the mapping from the (x, y) plane to the ({, v) plane is two-valued. We
restrict ourselves to the case of non-negative & and ». On physical grounds, it is also
reasonable to restrict £further to the range § > 1. We find that the topology of the band
edges differs substantially according as £ > 2 or 2> £ > 1. Figure 5(a) represents a
typical case (£ = 3.0) for & > 2. We have two distinct bands which touch at the point A
given by (v, §) = (&, —2). On the upper edge of the lower band the point C s given by
(v, &) = (2, — &). On the lower edge of the lower band the points B’ and B are given by

B:(v,0)=(25 -8 -25-4/2+9 (47a)
B:(v,0)= (25 -§+25-9)/(-2). (47b)

Between these points the analytic form of the band edge is
=—i5v - &v-v/E (48)
The point B is an image of the fixed point x = %, y = § and B’ is an image of x = — §,
y = — &. The broken lines within the band correspond to internal singularities of the

partial DOS.

In figure 6(a) the DOS corresponding to the lower band of figure 5(a), when § = 3.0,
v = 2.1, is shown. The partial DOs for the s and p orbitals coincide whenever, as in this
case, Vas = Vgp. The band edges in figure 5(a) where obtained by Davison and Foo
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(1976), except that they failed to obtain the portion of the band enclosed between the
broken lines and the curve B'B. They, therefore, deduced that the band contracted to
zero width at C.

The band structure for a typical case with 1 < £ <2 (& = 1.5) is given in figure 5(b).
Here there is only one band for v < 2 and the point A, where the band splits, is given by
(v, &) = (2, — §). The point B’ is again given by equation (47a) and B by

B: (v,0) = (2,286 - & - 4)/(2- §). (49)
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Figure 5. Band edges for the s—p hybrid crystal with (a) £ = 3.0, (b) § = 1.5. The broken
lines represent internal singularities in the bands.

The band edge between B’ and B is given by equation (48). In this case we have up to
three internal singularities in the band for fixed v. The point C, where the internal
singularities cross, is (v, ) = (§, — 2). B and B’ are both images of the point x = — %,
y = — §. The partial DOs for this case, with £ = 1.5, v = 1.3 is shown in figure 6(b).

Although the presence of a non-zero value of p affects the location of the band edges
the same qualitative behaviour is observed. We do, however, obtain a more complicated
form of DOS when V , , # Vpg. The partial DoOs for the s and p orbitals no longer coincide
and when V,, > Vpg, more internal singularities occur in the partial bos for the p
orbital. An example of thisis givenin figure 7, withp = 0.5, v = 2.0, § = 1.5,V o =V,
Ve = 0.5 V.
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Figure 6. Density of states for the s—p hybrid model, plotted against § = (E — ¢,)/V. The
parameter values are p = ¢ = 0 and in (a) Vs = 3.0, Vs = 2.1 (where only the band of
lower energy is shown) and in (b) Vap = 1.5, V4 = 1.3. In this case the partial densities of
states for the s and p orbitals coincide.
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Figure 7. Partial densities of states for the s—p hybrid crystal, plotted against =
(E ~ £,)/V, with parameter values ¢ =0, p = 0.5, Voo = V = 1.0, Vpp = 0.5, V45 = 1.5,
Vga = 2.0. The full and broken curves correspond respectively to the partial densities of
states for the s and p orbitals.
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6. Conclusions

We have considered a generalised diatomic tight-binding system in the MNA, to which
we apply a transformation, which decouples it into two monatomic systems with more
complicated interactions. In some special cases this allows us to obtain analytic results
directly from those for the simple monatomic MNA. In general it is possible, at this stage,
to use traditional Fourier transform methods to complete the calculations (Bahurmuz
and Loly 1981, Shen 1985). This procedure is relatively tedious for anything more than
the NN problem and we have used an alternative rescaling method, which allows us to
obtain partial DOS in a simple way. Our method also has the advantage of affording us
some physical insights into the problem. We find, for example, that under iteration the
many-neighbour parameter pscalestozero. Thisshows that the physical behaviour ofthe
systems considered is primarily determined by the finite-range problems. Our methodis
applied to both diatomic crystals and an s—p hybrid system.

Acknowledgments

Two of the authors (DAL and BWS) acknowledge the support of Nato Research Grant
No 033.80. This work was also supported by the Natural Sciences and Engineering
Research Council of Canada. In particular one of us (SGD) wishes to thank NSERC
and the Royal Society of London for a grant, under the auspices of the Anglo-Canadian
Scientific Exchange Scheme, which enabled him to enjoy the hospitality of the Depart-
ment of Mathematics at Chelsea College, London. The authors have also benefited from
discussions with P D Loly.

References

Bahurmuz A A and Loly P D 1981 J. Math. Phys. 22 564-8

Davison S G 1972 Int. J. Quantum Chem. 6 387-93

Davison S G and Foo E-N 1976 [nt. J. Quantum Chem. 10 867-72

Davison S G. Lavis D A and Sulston K W 1986 J. Phys. Chem. 90 652-5

Davison S G and Taylor N F 1969 Chem. Phys. Lett. 3424-6

Economou E N 1983 Green's Functions in Quantum Physics, Springer Series in Solid State Sciences vol 7, 2nd
edn (Berlin: Springer)

Langlois J-M, Tremblay A-M S and Southern B W 1983 Phys. Rev. B 28 218-31

Lavis D A, Southern B W and Davison S G {985 J. Phys. C: Solid State Phys. 18 1387-99

Parent L G. Davison S G and Ueba H 1980 J. Electroanal. Chem. 113 51-62

Shen Y 1985 Physica B 133 43-54

Southern B W, Kumar A A and Ashraff J A 1983a Phys. Rev. B 28 1785-91

Southern B W, Kumar A A. Loly P D and Tremblay A-M S 1983b Phys. Rev. B 27 1405-8

Tremblay A-M S and Southern B W 1983 J. Physique. Letr. 44 1.845-52



